A Derivative-Free Algorithm for Constrained Global Optimization Based on Exact Penalty Functions
نویسندگان
چکیده
Constrained global optimization problems can be tackled by using exact penalty approaches. In a preceding paper, we proposed an exact penalty algorithm for constrained problems which combines an unconstrained global minimization technique for minimizing a non-differentiable exact penalty function for given values of the penalty parameter, and an automatic updating of the penalty parameter that occurs only a finite number of times. However, in the updating of the penalty parameter, the method requires the evaluation of the derivatives of the problem functions. In this work, we show that an efficient updating can be implemented also without using the problem derivatives, in this way making the approach suitable for globally solving constrained problems where the derivatives are not available. In the algorithm, any efficient derivative-free unconstrained global minimization technique can be used. In particular, we adopt an improved version of the DIRECT algorithm. In addition, to improve the performances, the approach is enriched by resorting to derivative-free local searches, in a multistart framework. In this context, we prove that, under suitable assumptions, for every global minimum point there exists a neighborhood of attraction for the local search. An extensive numerical experience is reported.
منابع مشابه
Superlinearly convergent exact penalty projected structured Hessian updating schemes for constrained nonlinear least squares: asymptotic analysis
We present a structured algorithm for solving constrained nonlinear least squares problems, and establish its local two-step Q-superlinear convergence. The approach is based on an adaptive structured scheme due to Mahdavi-Amiri and Bartels of the exact penalty method of Coleman and Conn for nonlinearly constrained optimization problems. The structured adaptation also makes use of the ideas of N...
متن کاملA Derivative-Free Algorithm for Inequality Constrained Nonlinear Programming via Smoothing of an linfty Penalty Function
In this paper we consider inequality constrained nonlinear optimization problems where the first order derivatives of the objective function and the constraints cannot be used. Our starting point is the possibility to transform the original constrained problem into an unconstrained or linearly constrained minimization of a nonsmooth exact penalty function. This approach shows two main difficult...
متن کاملA Hybrid Method Combining Genetic Algorithm and Hooke-jeeves Method for Constrained Global Optimization
A new global optimization method combining genetic algorithm and Hooke-Jeeves method to solve a class of constrained optimization problems is studied in this paper. We first introduce the quadratic penalty function method and the exact penalty function method to transform the original constrained optimization problem with general equality and inequality constraints into a sequence of optimizati...
متن کاملA derivative-free algorithm for nonlinear programming
In this paper we consider nonlinear constrained optimization problems in case where the first order derivatives of the objective function and the constraints can not be used. Up to date only a few approaches have been proposed for tackling such a class of problems. In this work we propose a new algorithm. The starting point of the proposed approach is the possibility to transform the original c...
متن کاملAn approach to constrained global optimization based on exact penalty functions
In the field of global optimization many efforts have been devoted to solve unconstrained global optimization problems. The aim of this paper is to show that unconstrained global optimization methods can be used also for solving constrained optimization problems, by resorting to an exact penalty approach. In particular, we make use of a nondifferentiable exact penalty function Pq(x; ε). We show...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Optimization Theory and Applications
دوره 164 شماره
صفحات -
تاریخ انتشار 2015